1.Deploying Large NLP Models: Infrastructure Cost Optimization
source: https://neptune.ai/blog/nlp-models-infrastructure-cost-optimization
2.Large Language Models and Two Modes of Human Thinking
source: https://towardsdatascience.com/large-language-models-and-two-modes-of-human-thinking-1322160755e8
3.This is How to Stop ChatGPT, Bing, Poe, and You from Hallucinating
4.On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?
source: https://dl.acm.org/doi/pdf/10.1145/3442188.3445922
5. Building a Machine Learning Platform
source: https://neptune.ai/blog/ml-platform-guide
6. Optimizing Models for Deployment and Inference
source: https://neptune.ai/blog/optimizing-models-for-deployment-and-inference
7. Language != Thinking
source: https://medium.com/mlearning-ai/language-thinking-362fb1eee0c2
8. What Are Transformer Models and How Do They Work?
source: https://txt.cohere.ai/what-are-transformer-models/
9. 챗GPT와 대규모 언어모델 LLM 비용 분석
'Daily-Trend-Review' 카테고리의 다른 글
2023/4/20: 생성 에이전트 (0) | 2023.04.20 |
---|---|
2023/04/17: 지식 베이스와 Q&A 플랫폼을 ChatGPT에 통합하기 등 (0) | 2023.04.17 |
2023/04/12: Large Model 학습 레시피 (0) | 2023.04.12 |
2023/04/10: Carbon footprint 계산 (0) | 2023.04.10 |
2023/04/07: GPT4All (0) | 2023.04.07 |