1. High-throughput Generative Inference of Large Language Models with a Single GPU
source: https://arxiv.org/pdf/2303.06865.pdf
2. Deploying Large NLP Models: Infrastructure Cost Optimization
source: https://neptune.ai/blog/nlp-models-infrastructure-cost-optimization
3. What Are Transformer Models and How Do They Work?
source: https://txt.cohere.com/what-are-transformer-models/
4. Efficient Transformers: A Survey
source: https://arxiv.org/pdf/2009.06732.pdf
5. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face
source: https://arxiv.org/pdf/2303.17580.pdf
6. Andrej Karpathy's twitter - 최근 opensource LLM ecosystem에 대한 의견
source: https://twitter.com/karpathy/status/1654892810590650376
7. Why we should train smaller LLMs on more tokens
source: https://www.harmdevries.com/post/model-size-vs-compute-overhead/
8. LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention
source: https://arxiv.org/pdf/2303.16199.pdf
9. 그림으로 이해하는 스테이블 디퓨전
'Daily-Trend-Review' 카테고리의 다른 글
2023/05/17: Dr.LLaMA, 100k Context Windows, PaLM2 MEGABYTE (0) | 2023.05.17 |
---|---|
2023/05/10: LLM Tech Stack, Open LLMs, 8bit MM 등 (0) | 2023.05.10 |
2023/05/03: Autonomous Agents, AI Compute의 높은 비용 등 (0) | 2023.05.03 |
2023/04/22: AI 모델 데이터 문제, StableLM 등 (0) | 2023.04.22 |
2023/4/20: 생성 에이전트 (0) | 2023.04.20 |